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In this paper, we discuss triangle quantum channels, their implementation as parameterized quantum circuits
(PQCs), and their applications in variational quantum algorithms (VQAs). According to channel-state duality,
there is an one-to-one correspondence between triangle quantum channels and Bell diagonal states (BDSs). We
find this connection between a Bloch representation of a triangle quantum channel and a probability generator
of Bell diagonal state via a parameterized quantum circuit. Therefore, such parameterized quantum circuits
(PQCs) can be used to build general-purpose ansatzs for a variety of applications, such as variational quantum
algorithms and quantum machine learning.

I. INTRODUCTION

Channel-state duality is the one-to-one correspondence
between quantum channels and bipartite quantum states,
which are the states of two quantum systems. The
Choi–Jamiołkowski isomorphism Araújo [1] connects these
quantum channels (completely positive maps) and quantum
states (density matrices). Therefore, quantum channels and
unital channels, which contain Pauli channels and triangle
channels, correspond to Choi states and Bell diagonal states,
respectively.

A quantum state is a mathematical model of the potential
results of measuring a quantum system. Quantum channels
are related to Choi states, which connect operations and states.
To make the Choi state for a channel, we use the maximally
entangled state and the channel’s effect on it. A Bell diago-
nal state is a random combination of Bell states, which are the
maximally entangled states of two qubits. The partial trans-
pose matrix determines the entanglement of a Bell diagonal
state. A Werner state is a mix of a single Bell state and the
maximally mixed state I.

A quantum channel is a mathematical model that shows
how a quantum system changes under the effect of noise or
environment. A unital quantum channel is a quantum channel
that keeps the identity matrix unchanged. A Pauli channel is a
kind of unital channel that randomly applies a Pauli operator
to a qubit with some probability. A triangle channel can send
quantum states and information using a set of cosine functions
Li [2]. Werner channel is a special unital channel with equal
Bloch representation values.

This article shows how we obtained an identity of a prob-
ability distribution by applying a Hadamard transform and a
triangle qubit channel. We also figure out a parameterized
quantum circuit based on the probability distribution, which
enabled us to generate a Bell diagonal state using probability
generator, vector basis conversion and measurement.

The probability generator of parameterized quantum circuit
linked to triangle qubit channel enables us to construct univer-
sal ansätze. An ansatz is a German word that means an edu-
cated guess or a plausible assumption. Ansätze is the plural

∗ changli@adputer.com

form of ansatz. Universal ansätze are a class of parametrized
quantum circuits that can be used to approximate any quantum
state or unitary operation.

Variational Quantum Algorithms (VQAs) are one of the po-
tential applications of the probability generator with parame-
terized quantum circuit. They are a class of quantum algo-
rithms that use a hybrid quantum-classical approach to op-
timize a parameterized quantum circuit or universl ansätze.
VQAs can be used to solve various problems, such as find-
ing the ground state energy of a system, solving optimization
problems, or performing quantum machine learning.

II. CHANNEL STATE DUALITY

Channel-state duality (CSD) describes the relationship be-
tween quantum channels and quantum states. Jiang et al. [3] A
quantum channel is a mathematical model of a physical pro-
cess that transforms a quantum state. A quantum state is a
mathematical representation of the possible outcomes of mea-
suring a quantum system. Channel-state duality means that
there is a one-to-one correspondence between quantum chan-
nels and bipartite quantum states, which are quantum states of
two quantum systems. This correspondence allows us to use
quantum states to study channels, and vice versa.

One way to understand Channel-state duality (CSD) is to
use the Choi-Jamiolkowski isomorphism, which is a mathe-
matical map that converts a quantum channel into a quantum
state, and vice versa. ? ] The Choi-Jamiolkowski isomor-
phism works by applying the quantum channel to one half
of a maximally entangled state, which is a quantum state
that has the highest possible correlation between two quan-
tum systems. The output state is called the Choi matrix, and
it encodes the action of the quantum channel on any input
state. Conversely, any bipartite quantum state can be con-
verted into a quantum channel by using the inverse of the
Choi-Jamiolkowski isomorphism.

A Bell Diagonal State (BDS) is a type of bipartite qubit
state that is defined as the probabilistic mixture of Bell states,
which are the maximally entangled states of two qubits. ? ] A
Bell diagonal state of two qubits can be written in the density
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matrix form as:

ρ =
1
4
(I ⊗ I +

3

∑
i=1

λiσi ⊗σi) (1)

where I is the identity matrix, σi are the Pauli matrices, and
λi are real numbers satisfying −1 ≤ λi ≤ 1 for i = 1, 2, 3
and ∑

3
i=1 λ 2

i ≤ 1. The numbers λi are called the canonical
parameters of the Bell diagonal state, and they are uniquely
determined by the state up to permutation.

By Channel-State Duality, there is a one-to-one correspon-
dence between a unital channel and a Bell diagonal state,
which means that any unital channel can be represented by
a Bell diagonal state, and vice versa.

As a type of unital channel, the Pauli channel is one-to-one
correspondence to a Bell diagonal state such that the output
state of a Pauli channel applied to a qubit is always a Bell di-
agonal state, and the canonical parameters of the Bell diagonal
state are equal to the probabilities of the Pauli channel. Con-
versely, any Bell diagonal state can be obtained by applying
a Pauli channel to a qubit, and the probabilities of the Pauli
channel are equal to the canonical parameters of the Bell di-
agonal state. Therefore, a Pauli channel and a Bell diagonal
state can be seen as two different representations of the same
quantum operation or quantum state.

III. TRIANGLE QUANTUM CHANNEL

A. Quantum Channel

A quantum channel is represented by a completely positive
and trace-preserving (CPTP) linear map,

Φ : HA → HB (2)

where HA and HB are the Hilbert spaces associated with the
quantum systems before and after the channel, respectively.

• Linear Map: A quantum channel is a linear map that
describes the evolution of a quantum state. If you have
a quantum state ρ , the output state after the channel acts
on it is given by Φ(ρ), where Φ is the quantum channel.

• Completely Positive: This property ensures that the
quantum channel acts in a way that preserves positivity.
If the initial state is a positive operator (density matrix),
the final state will also be positive.

• Trace-Preserving: This property ensures that the trace
of the density matrix is conserved. The trace represents
the probability, and the preservation of trace ensures
that probabilities sum to 1.

B. Unital Quantum Channel

A unital quantum channel is a quantum channel that pre-
serves the identity matrix such that Φ(I) = I. A qubit channel

Φ is a two-dimensional quantum channel. Any qubit state ρ

can be represented by the Pauli matrices σi as the basis such
that ρ = 1

2 ∑
3
i=0 riσi where ri ∈ R and r0 = 1. The real vector

r⃗ = (rx,ry,rz) with trace(ρ) = 1 is called Bloch vector. The
qubit channel Φ acting on the state ρ is a 4 by 4 real matrix
Tφ . Specially, the unital channel has the matrix

Tφ =

1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

 (3)

where λ1, λ2, and λ3 are real numbers and Tφ =
diag(1,λ1,λ2,λ3) is called the Bloch representation of the
unital channel.

The conditions that the diagonal elements must satisfy com-
pletely positive and trace-preserving to ensure that the matrix
TΦ represents a unital qubit channel are:

q00 =
1
4
(1+λ1 +λ2 +λ3)≥ 0

q01 =
1
4
(1−λ1 +λ2 −λ3)≥ 0

q10 =
1
4
(1+λ1 −λ2 −λ3)≥ 0

q11 =
1
4
(1−λ1 −λ2 +λ3)≥ 0

(4)

The series {qi j} ≥ 0 represents the eigenvalues of the Choi
matrix of the unital channel. Choi [4] These eigenvalues de-
termine the channel’s action on the Bloch sphere, specifically
how it scales along the x, y, and z axes.

C. Pauli Channel

A Pauli channel is a type of unital channel that applies a
random Pauli operator to a qubit with some probability. A
Pauli channel can be written as

Φ(ρ) =
3

∑
i=0

piσiρσi (5)

where 0 ≤ pi ≤ 1 and ∑
3
i=0 pi = 1.

A Pauli operator is a matrix that can flip or rotate a qubit in
the Bloch sphere. There are four Pauli operators: σ0 = I, σ1,
σ2, and σ3, which correspond to the identity, bit-flip, phase-
flip, and bit-and-phase-flip operations, respectively. A Pauli
channel can be described by a vector of four probabilities
(p0, p1, p2, p3), where pi is the probability of applying the i-th
Pauli operator to the qubit.

The Choi matrix of a Pauli channel is a 4 × 4 matrix that
represents the action of the Pauli channel on one half of a
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maximally entangled state of two qubits. The Choi matrix of
a Pauli channel can be written as:

ΦC =
1
4
(I2 ⊗ I2 +

3

∑
i=1

λiσi ⊗σi) (6)

The Kraus matrices of a Pauli channel are a set of matrices
that represent the quantum channel in a different way, they
are

K0 = p0I,K1 = p1σ1,K2 = p2σ2,K3 = p3σ3 (7)

And Kraus matrices satisfy the completeness relation
∑

3
i=0 K†

i Ki = I.

D. Triangle Qubit Channel

In the paper Li [2], we have proved a theorem about a unital
qubit channels as follows:

Theorem 1. Given a triangle on the unit circle, there exists
a unital qubit channel described by real Bloch representation
diag(1,λ1,λ2,λ3) where real number λ1,2,3 ∈ [−1,+1] such
that

(λ1,λ2,λ3) =

(cos(γ)cos(α),cos(γ)cos(β ),cos(β )cos(α))

(8)

where parameters α,β ,γ ∈ R. This unital qubit channel is
called triangle qubit channel.

Given vector q⃗ = (q00,q01,q10,q11)
T ,

q⃗ =
1
2

H2 ∗ (1,λ1,λ2,λ3)
T (9)

where H2 is 4x4 Hardamard matrix, the vector q⃗ is a prob-
ability distribution because for each element qi j ≥ 0 since
∑

1
i, j=0 qi j = 1. Assign elements of the vector q⃗ to Pauli op-

erators as follows,

Φ(ρ) = q00ρ +q01σ1ρσ1 +q11σ2ρσ2 +q10σ3ρσ3

(10)
we construct a Pauil channel through the triangle qubit chan-
nel.

IV. BELL DIAGONAL STATE AND ENTANGLEMENT

Bell basis is a collection of Bell states. Following the nota-
tion in textbook Nielsen and Chuang [5], Bell basis is repre-
sented as a matrix of |β jk⟩,

(
|β00⟩ |β01⟩
|β10⟩ |β11⟩

)
=

( |00⟩+|11⟩√
2

|01⟩+|10⟩√
2

|00⟩−|11⟩√
2

|01⟩−|10⟩√
2

)
, (11)

where |β jk⟩ = 1√
2
(|0, j > +(−1) j|1,k ⊕ 1 >), j,k ∈ {0,1},

and ⊕ is the xor.

A. Bell Diagonal States

A Bell diagonal state is defined as the probabilistic mixture
of Bell states, which are the maximally entangled states of two
qubits. It is written as

SBD =
1

∑
j,k=0

q jk|β jk⟩⟨β jk| (12)

where {q jk} is a probablity distribution with 0 ≤ q jk ≤ 1 and
∑

1
j,k=0 q jk = 1. Given Bloch representation of a unital chan-

nel (λ1,λ2,λ3) where λ1,2,3 ∈ [−1,1], since a probability dis-
tribution of a unital qubit channel ΦC = diag(1,λ1,λ2,λ3) is
defined as

q00
q01
q10
q11

=
1
4

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1


 1

λ1
λ2
λ3

 (13)

where ∑
1
j,k=0 q jk = 1 and 0≤ q jk ≤ 1 for all j,k ∈{0,1}, Since

|Φ+⟩⟨Φ+|= |β00⟩⟨β00|=
1
2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 ,

|Ψ+⟩⟨Ψ+|= |β01⟩⟨β01|=
1
2

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 ,

|Φ−⟩⟨Φ−|= |β10⟩⟨β10|=
1
2

1 0 0 1̄
0 0 0 0
0 0 0 0
1̄ 0 0 1

 ,

|Ψ−⟩⟨Ψ−|= |β11⟩⟨β11|=
1
2

0 0 0 0
0 1 1̄ 0
0 1̄ 1 0
0 0 0 0



(14)
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where 1̄ =−1, thus we obtain the Bell Diagnoal State (BDS)

SBD(λ1,λ2,λ3) = ∑
0≤ j,k≤1

q jk|β jk⟩⟨β jk|

=
1
2

q00 +q10 0 0 q00 −q10
0 q01 +q11 q01 −q11 0
0 q01 −q11 q01 +q11 0

q00 −q10 0 0 q00 +q10



=
1
4

 1+λ1 0 0 λ2 +λ3
0 1−λ1 λ2 −λ3 0
0 λ2 −λ3 1−λ1 0

λ2 +λ3 0 0 1+λ1


=

1
4
(I2 ⊗ I2 +λ2(σ1 ⊗σ1)−λ3(σ2 ⊗σ2)+λ1(σ3 ⊗σ3))

(15)

B. Entanglement of Bell Diagnoal State

Quantum Entanglement was originally described as a phys-
ical phenomenon. In mathematics, it is defined as a quantum
state that cannot be represented as a tensor product of basis in
Hilbert space.

According to the Positive Partial Transpose (PPT) criterion
Peres [6] and Horodecki et al. [7], for the positive density ma-
trix SBD(λ1,λ2,λ3) in Eq.(15), if and only if exists a negative
eigenvalue of the partial transpose matrix STB

BD(λ1,λ2,λ3), then
the two qubits in the state SBD(λ1,λ2,λ3) is entangled, where

STB
BD(λ1,λ2,λ3)

=
1
4

 1+λ1 0 0 λ2 −λ3
0 1−λ1 λ2 +λ3 0
0 λ2 +λ3 1−λ1 0

λ2 −λ3 0 0 1+λ1


=

1
4
(I2 ⊗ I2 +λ2(σ1 ⊗σ1)+λ3(σ2 ⊗σ2)+λ1(σ3 ⊗σ3))

(16)

SBD(λ1,λ2,λ3) = STB
BD(λ1,λ2,−λ3) only one sign difference

in λ3. The eigenvalues of SBD(λ1,λ2,λ3) are 1
4 (1+λ1 +λ2 +

λ3),
1
4 (1−λ1 +λ2 −λ3),

1
4 (1+λ1 −λ2 −λ3),

1
4 (1−λ1 −λ2 +

λ3), while the eigenvalues of STB
BD(λ1,λ2,λ3) are 1

4 (1− λ1 −
λ2 −λ3),

1
4 (1+λ1 −λ2 +λ3),

1
4 (1−λ1 +λ2 +λ3),

1
4 (1+λ1 +

λ2 − λ3). If all eigenvalues of the state SBD(λ1,λ2,λ3) are
non-negative, then, if one of an eigenvalue of STB

BD(λ1,λ2,λ3)
is negative, the state SBD(λ1,λ2,λ3) is entangled.

C. Werner State

Given λ1 = λ2 = λ3 = λ ∈ [0,1], so the eigenvalues of
SBD(λ ) are q00 = (1 + 3λ )/4 > 0, q01 = q10 = q11 = (1 −

λ )/4 ≥ 0, where

SBD(λ ) =
1

∑
j,k=0

q jk|β jk⟩⟨β jk|

= λ |β00⟩⟨β00|+
1−λ

4
I4

=
1
4

1+λ 0 0 2λ

0 1−λ 0 0
0 0 1−λ 0

2λ 0 0 1+λ


(17)

SBD(λ ) is called two-qubit Werner state that is a linear com-
bination of a singlet Bell state and the maximally mixed state
I4.

The eigenvalues of STB
BD(λ ) are (1− 3λ )/4 and (1+λ )/4.

Since (1 + λ )/4 > 0, one negative eigenvalue means (1 −
3λ )/4 < 0. Hence, if λ > 1/3 then the state SBD is entan-
gled.

V. PROBABILITY DISTRIBUTION OF TRINGLE QUBIT
CHANNEL

Theorem 2. Given a triangle qubit channel in Bloch repre-
sentation

diag
(
1,cos(γ)cos(α),cos(α)cos(β ),cos(β )cos(γ)

)
(18)

and

p00 =
(
cos

α

2
cos

β

2
cos

γ

2
+ sin

α

2
sin

β

2
sin

γ

2
)2

p01 =
(
cos

α

2
cos

β

2
sin

γ

2
− sin

α

2
sin

β

2
cos

γ

2
)2

p10 =
(
cos

α

2
sin

β

2
cos

γ

2
− sin

α

2
cos

β

2
sin

γ

2
)2

p11 =
(
cos

α

2
sin

β

2
sin

γ

2
+ sin

α

2
cos

β

2
cos

γ

2
)2

(19)

where α,β ,γ ∈ R we have the identity below

1 = p00 + p01 + p10 + p11

cos(γ)cos(α) = p00 − p01 + p10 − p11

cos(α)cos(β ) = p00 + p01 − p10 − p11

cos(β )cos(γ) = p00 − p01 − p10 + p11

(20)

Proof. Define

(a,b,c) = (cos
α

2
,cos

β

2
,cos

γ

2
)

(ā, b̄, c̄) = (sin
α

2
,sin

β

2
,sin

γ

2
)

(21)
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we have

a2 + ā2 = 1,a2 − ā2 = cos(α),

b2 + b̄2 = 1,b2 − b̄2 = cos(β ),

c2 + c̄2 = 1,c2 − c̄2 = cos(γ).

(22)

and

p00 = (abc+ āb̄c̄)2

p01 = (abc̄− āb̄c)2

p10 = (ab̄c− ābc̄)2

p11 = (ab̄c̄+ ābc)2

(23)

then the identity is proved as follows,

1 = p00 + p01 + p10 + p11

= (a2 + ā2)(b2 + b̄2)

cos(γ)cos(α) = p00 − p01 + p10 − p11

= (c2 − c̄2)(a2 − ā2)

cos(α)cos(β ) = p00 + p01 − p10 − p11

= (a2 − ā2)(b2 − b̄2)

cos(β )cos(γ) = p00 − p01 − p10 + p11

= (b2 − b̄2)(c2 − c̄2)
(24)

Because 0 ≤ pi j ≤ 1 and ∑
1
i, j=0 pi j = 1, the set {pi j} forms a

probability distribution.

Assign elemetns of the probability distribution
(p00, p01, p11, p10) above to Pauli operators as follows,

Φ(ρ) = p00ρ + p01σ1ρσ1 + p11σ2ρσ2 + p10σ3ρσ3

(25)
we construct a Pauil channel through the triangle qubit chan-
nel. The Bell diagonal state resulting from the action of the
Pauli channels can be expressed as:

ρ = p00|Φ+⟩⟨Φ+|+ p01|Ψ+⟩⟨Ψ+|
+ p10|Φ−⟩⟨Φ−|+ p11|Ψ−⟩⟨Ψ−|

(26)

VI. QUANTUM CIRCUITS OF TRIANGLE QUBIT
CHANNEL

A. Parameterized Probability Generator

In the paper Gårding et al. [8] authors presented a quan-
tum circuit of parameterized probability generator with three

FIG. 1. Parameterized Probability Generator The three-phase
gates Ry(α),Ry(β ),Ry(γ) and the CNOT gate generate parameter-
ized probability distributions defined in equations (19) and Gårding
et al. [8].

paramters {α,β ,γ} ∈ R as follows: where θ ∈ {α,β ,γ} ⊂
R, and

Ry(θ) = e−iσ2
θ
2 =

(
cos θ

2 −sin θ

2
sin θ

2 cos θ

2

)
(27)

The generated wave function of two qubits with parameterized
probability in Eq.(19) is

|ΨAB⟩=
1

∑
j,k=0

√
p jk| jk⟩ (28)

B. Generate Bell Diagonal State

By using a Hardmard gate and a CNOT gate along with
meausrement, we can make a basis converter from standard
basis to Bell basis, then the final Bell Diagonal State (BDS)
SBD is

SBD =
1
4
(
I2 ⊗ I2 + cos(α)cos(β )(σ1 ⊗σ1)

+ cos(β )cos(γ)(σ2 ⊗σ2)

+ cos(γ)cos(α)(σ3 ⊗σ3)
) (29)

Note there is a substitution of (123) from Bloch representation
of triangle qubit channel to quantum circuit respect to Paliu
operators above. The negative sign of −λ3 has been reflected
the product of imaginary number i in σ2 ⊗σ2.

VII. APPLICATIONS

A. Variational Quantum Algorithms (VQAs)

Variational Quantum Algorithms (VQAs) are a class of
quantum algorithms that use a hybrid quantum-classical ap-
proach to optimize a parametrized quantum circuit Tilly
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FIG. 2. Parameterized quantum circuit of Bell Diagonal State. The first part is a probability generator circuit; the second part replaces the
measurement with two CNOT gates; and the third part converts the standard basis to a Bell basis.

FIG. 3. PQC of 4 Probability Generators of Triangle Qubit Channel. The first part is two probability generators. The second part consists
of two swap gates to swap dual qubits. The third part also includes two probability generators.

et al. [9]. VQAs represent a promising approach to solv-
ing quantum problems by leveraging the variational principle,
parameterized quantum circuits, classical optimization rou-
tines, and problem-specific objective functions. Optimization
or learning based approaches are suitable for NISQ (Noisy
Intermediate-scale Quantum) quantum devices that have lim-
ited qubits and coherence time. Cerezo et al. [10]

1. Variational Quantum Algorithms (VQAs)

Variational Quantum Algorithms (VQAs) are based on the
variational principle, which states that for any quantum state,
the expectation value of the energy is minimized when the
state is the exact ground state of the system. Cerezo et al. [10]

• Objective Function:
Depending on the problem, define the objective func-
tion that the quantum algorithm aims to minimize. This
function is often related to the problem being solved
(e.g., energy in quantum chemistry, cost function in ma-
chine learning).

• Ansatz and PQCs:
In VQA, tunable Parameterized Quantum Circuits
(PQCs) are used to prepare variational quantum states.
These parameters are optimized to minimize the ex-
pected value of the chosen objective function. In partic-
ular, quantum circuit architectures are specified, includ-
ing choices of gates, qubits, and entanglement modes.

Ansatz are state preparation circuits most often de-
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FIG. 4. A Variational Quantum Eigensolver (VQE) by the PQC of Triangle Qubit Channel This curve describes a variational quantum
eigensolver by using the parameterized quantum circuit of triangle qubit channel with a given Hamiltonian matrix. It shows the process to
arrive the ground state energy.

signed to respect the symmetry of the problem Hamilto-
nian, which helps limit variational searches to the sub-
space of interest.

Use a quantum computer or quantum simulator to exe-
cute a variational quantum circuit and measure the as-
sociated observables required to compute the objective
function.

• Optimization:
Classical optimization algorithms are executed to ad-
just the parameters of the quantum circuit to minimize
the objective function. Popular classical optimization
algorithms include gradient descent and its variants.

• Iteration:
Repeat the quantum circuit execution and classical op-
timization steps iteratively until a satisfactory solution
is found.

2. Variational Quantum Eigensolvers (VQEs)

Variational Quantum Eigensolvers (VQEs) find the low-
est eigenvalues and eigenvectors of a given Hamiltonian and
can be used in applications such as quantum chemistry and
simulations. VQE seeks to minimize an objective function,
which is the expectation value ⟨Ψ(θ)|H|Ψ(θ)⟩ of H over a
trial wave function |Ψ(θ)⟩ = U(θ)|Ψ0⟩ for an ansatz U(θ)
and the initial state |Ψ0⟩. Tilly et al. [9] Qiskit is an open
source quantum computing software development framework
that supports VQA, which we use to draw quantum circuit di-
agrams. QiskitDoc [11] Cirq is a Python library for designing,

simulating, and running quantum circuits, which we use to im-
plement VQE via a probability generator for triangle quantum
channels. CirqDoc [12]

VIII. CONCLUSION

Channel-State Duality (CSD) describes the one-to-one cor-
respondence between quantum channels and bipartite quan-
tum states. This duality allows for the use of quantum states
to study channels and vice versa.

Bell diagonal states, which are probabilistic mixtures of
Bell states, can be used to represent unital channels. The
canonical parameters of the Bell diagonal state correspond to
the probabilities of the unital channel.

Triangle quantum channels are represented by completely
positive and trace-preserving linear maps. These channels act
on quantum states and preserve positivity and the trace of the
density matrix.

The probability distribution of a triangle qubit channel can
be determined based on the values of α,β , and γ . The proba-
bilities q00,q01,q10, and q11 satisfy certain identity involving
cosines of α,β , and γ , which is the foundation to link a trian-
gle quantum channel and the parameterized quantum circuit.

Probability generators of triangle quantum channels can be
used to parameterize quantum circuits for the applications
such as variational quantum algorithms. The basic circuits
can be used to build large-scale parameterized quantum cir-
cuits for quantum machine learning.
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