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Given a triangle on a unit circle, we proved that an unital qubit channel can be constructed by cosine correlation
functions. Furthermore, we proved that Bell’s inequality is non-violation for the antipodal point of the triangle qubit
channel. Finally, we discussed a triangle qubit channel formed by three cosine wave functions with relatively prime
frequencies.

I. INTRODUCTION

Quantum channels can transmit quantum states and classi-
cal information. In particular, a qubit channel is a quantum
channel with a single qubit. Quantum channels play an im-
portant role in quantum computing, quantum communication,
and quantum cryptography. In physics, we can implement
quantum channels by the transmission of entangled photons
through fiber optics or free space.

This paper originated from the author’s previous research
on Jones polynomials in quantum computing1 and on Bell’s
inequality2 of polynomial matrix3. In theorem 1, we con-
structed a qubit channel based on a triangle on the unit cir-
cle and figured out the cosine correlation functions as its ele-
ments.

To theorem 2, from K. Martin4’s research on the scope
of quantum channels and the research of A. Fujiwara and P.
Algoet5 on Fujiwara-Algoet Condition (FAC), we proved the
non-violation of Bell’s inequality2 for the antipodal point of
an unital qubit channel. We also refered to the research of D.
Braun6 and colleagues on universal features of the quantum
channels included the M.-D. Choi’s matrix7 for completely
positive and trace-preserving.

II. BACKGROUND

Define Md(C) to be the set of d×d matrices over the com-
plex field C and Dd(C) to be the set of d×d density operator
matrices that is positive, Hermitian, and trace one. A chan-
nel φ : Md(C)→Md(C) is a linear map that is completely
positive with trace-preserving. A channel φ is also a map φ :
Dd(C)→ Dd(C). A unitary channel φu : Md(C)→Md(C)
is the set φu(ρ) = UρU† where U is a unitary d× d matrix
and the operator ρ ∈Dd(C) is a density operator matrix.6

A qubit channel φ : M2(C)→M2(C) is a two-dimensional
channel. We can represent any state ρ ∈M2(C) by Pauli ma-
trices as the basis such that ρ = 1

2 ∑
3
i=0 riσi where ri ∈ R with

r0 = 1. The trace(ρ) = 1 and r = (r1,r2,r3) is the Bloch vec-
tor. A qubit channel φ acting on state ρ ∈M2(C) is a 4 by
4 real homogeneous matrix Tφ . The positivity of Choi’s ma-
trix of Tφ is equivalent to the complete positivity of the qubit
channel φ .
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An unital qubit channel is a qubit channel φ such that
φ(I/2) = I/2, that is the matrix Tφ = diag(1,λ1,λ2,λ3). An
antipodal point or an antipode of a point in a Bloch sphere
is the diametrically opposite point. The antipodal map φ ′ :
B3(R)→B3(R) in Bloch sphere is φ ′(λ ) =−λ .

III. TRIANGLE QUBIT CHANNEL

Theorem 1. Given a triangle on the unit circle, there
exists an unital qubit channel described by the triple
(λ1,λ2,λ3) = (cos(2πω1)cos(2πω3), cos(2πω2)cos(2πω3),
cos(2πω1)cos(2πω2)) where the ω1,ω2,ω3 ∈ R.

Proof. Three vertices on the unit circle of the complex plane
make a unique triangle. Given these three distinct ver-
tices as a triple (exp(i2πθ1),exp(i2πθ2),exp(i2πθ3)) where
θ1,θ2,θ3 ∈ R, we define the triangle qubit matrix T (Θ;K4)
with the basis of the Klein four-group K4 below,

T (Θ;K4) =
1
2
(
κ0+κ1exp(i2πθ1)+κ2exp(i2πθ2)+κ3exp(i2πθ3)

)
(1)

where Θ = (θ1,θ2,θ3) and K4 = (κ0,κ1,κ2,κ3). Below is
the K4 representation with four diagonal matrices that their
elements are in {-1,0,+1} and κ0 is the identity,

κ0 =


+1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1

 ,κ1 =


+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1

 , (2)

κ2 =


+1 0 0 0
0 −1 0 0
0 0 +1 0
0 0 0 −1

 ,κ3 =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

 , (3)

where det(κi) = 1, trace(κi) = 0(i 6= 0), and κi is diagonal
for all i∈ {0,1,2,3}. The absolute square of the triangle qubit
T (Θ,K4) is

T (Θ,K4)T (Θ,K4)
∗ = T (Θ,K4)T (Θ,K4)

†

=
1
2
(κ0 +κ1exp(+i2πθ1)+κ2exp(+i2πθ2)+κ3exp(+i2πθ3))

∗1
2
(κ0 +κ1exp(−i2πθ1)+κ2exp(−i2πθ2)+κ3exp(−i2πθ3)).

Since K4 is an Abelian group with κ0 as identity, κi
2 = I4 for

all i ∈ {0,1,2,3}, and κ1κ2 = κ3,κ1κ3 = κ2,κ2κ3 = κ1, the
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absolute square of T (Θ,K4) is equal to

κ0+
1
4
{

κ1(exp(i2πθ1)+ exp(−i2πθ1))

+κ2(exp(i2πθ2)+ exp(−i2πθ2))

+κ3(exp(i2πθ3)+ exp(−i2πθ3))

+κ1(exp(i2π(θ2−θ3))+ exp(−i2π(θ2−θ3)))

+κ2(exp(i2π(θ1−θ3))+ exp(−i2π(θ1−θ3)))

+κ3(exp(i2π(θ1−θ2))+ exp(−i2π(θ1−θ2))
}
.

Furthermore, let θ̂ = θ1+θ2+θ3
2 , by Eluer’s formula and co-

sine multiplication formula, the absolute square of T (Θ,K4)
is equal to

κ0+κ1cos(θ̂ −θ3)cos(θ̂ −θ2)+κ2cos(θ̂ −θ3)cos(θ̂ −θ1)

+κ3cos(θ̂ −θ2)cos(θ̂ −θ1).

Moreover, let ω1,ω2,ω3 ∈ R such that θ1 = ω1 +ω3,θ2 =
ω2 +ω3,θ3 = ω1 +ω2, we obtain θ̂ = ω1 +ω2 +ω3,ω1 =
θ̂ −θ2,ω2 = θ̂ −θ1, and ω3 = θ̂ −θ3, the absolute square of
U(Θ,K4) is equal to

κ0 +κ1cos(2πω1)cos(2πω3)+κ2cos(2πω2)cos(2πω3)

+κ3cos(2πω1)cos(2πω2)

Let (λ1,λ2,λ3) = (cos(2πω1)cos(2πω3),cos(2πω2)cos(2πω3),
cos(2πω1)cos(2πω2)) and (q0,q1,q2,q3) =

1
4 (1+λ1 +λ2 +

λ3,1 + λ1 − λ2 − λ3,1 − λ1 + λ2 − λ3,1 − λ1 − λ2 + λ3),
since T (Θ;K4)T (Θ;K4)

† ≥ 0 which is equivalent to
diag(q0,q1,q2,q3) ≥ 0 where the 1

4 (q0,q1,q2,q3) are
eigenvalues of Choi’s matrix7 for density operator
ρ = 1

2 (I2 + ∑
3
i=1 λiσi). In addition, since |λi| ≤ 1, by

Lemma 5.114 and Choi’s theorem7, the diagonal matrix
diag(1,λ1,λ2,λ3) is a unital qubit channel.

Remark 1. By the definition of (λ1,λ2,λ3) above, there
is λ1λ2λ3 = (cos(2πω1)cos(2πω2)cos(2πω3))

2, thus
cos(2πω1)cos(2πω2)cos(2πω3) = ±

√
λ1λ2λ3. We obtain

cos(2πω1) = ±
√

λ1λ3/λ2, cos(2πω2) = ±
√

λ2λ3/λ1, and
cos(2πω3) = ±

√
λ1λ2/λ3. The map from λi to ωi is not

bijective.

IV. ANTIPODAL POINT AND BELL'S INEQUALITY

Theorem 2. The antipodal point of a triangle qubit channel
on Bloch sphere is non-violation Bell’s inequality with cosine
correlation functions.

Proof. Given a qubit channel with a point (λ1,λ2,λ3) in
Bloch sphere, its antipodal point is equal to (λ ′1,λ

′
2,λ
′
3) =

(−λ1,−λ2,−λ3) with the density operator ρ ′ = 1
2 (I2 +

∑
3
i=1 λ ′i σi). Choi’s matrix of ρ ′ is

Cφ ′ =
1
4


+1−λ3 0 0 −λ1−λ2

0 +1+λ3 −λ1 +λ2 0
0 −λ1 +λ2 +1+λ3 0

−λ1−λ2 0 0 +1−λ3

 . (4)

Let the eigenvalues of Cφ ′ be (q′0,q
′
1,q
′
2,q
′
3), we obtain q′0 =

1
4 (1−λ1−λ2−λ3), q′1 =

1
4 (1−λ1+λ2+λ3), q′2 =

1
4 (1+λ1−

λ2 +λ3),q′3 = 1
4 (1+λ1 +λ2−λ3). To the corresponding qi

in the proof of Theorem 1, for all i ∈ {0,1,2,3} there are qi +
q′i =

1
2 and 0≤ qi ≤ 1 because |λi| ≤ 1 and qi is an eigenvalue

of Choi’s matrix of the unital qubit channel. Thus, we have
− 1

2 ≤ q′i ≤ 1
2 .

To an unital qubit channel, there are q1 = 1 + λ1 − λ2 −
λ3 ≥ 0 and q2 = 1−λ1 +λ2−λ3 ≥ 0. That is, −(1−λ3) ≤
λ1− λ2 ≤ 1− λ3 which is |λ1− λ2| ≤ 1− λ3, one of a FAC
inequality5. For the antipodal point since λ ′i = −λi, we have
|λ ′1−λ ′2| ≤ 1+λ ′3. When.Pxz,Pyz,Pxy are correlation functions
and λ ′1 = Pxz, λ ′2 = Pyz, λ ′3 = Pxy, we obtain Bell’s inequality2:

|Pxz−Pyz| ≤ 1+Pxy. (5)

Especially, let the cosine correlation functions be Pxz =
cos(2πω1)cos(2πω3), Pyz = cos(2πω2)cos(2πω3), and Pxy =
cos(2πω1)cos(2πω3), we proved the theorem for the antipo-
dal point.

V. DISCUSSION

A special case in theorem 1 is (ω1,ω2,ω3) = (pt,qt,rt)
where (p,q,r) are relatively prime and t ∈ R, we obtain three
cosine wave functions cos(2π pt),cos(2πqt), and cos(2πrt)
with frequencies (p,q,r). The triangle qubit matrix T (Θ;K4)
becomes

T (z, p,q,r;K4) =
1
2
(κ0 +κ1zp+r +κ2zq+r +κ3zp+q) (6)

where z= exp(i2πt), which is a polynomial matrix over Klein
four-group. In physics, we can apply three cosine waves with
zero phases to construct a continuous triangle qubit channel.
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