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Triangle qubit channels are a type of quantum channel used in the context of quantum communication and
quantum information processing. In this article, we describe a method for constructing and analyzing triangle
qubit channels, and derive explicit formulas for measuring the fidelity of these channels using qubit fidelity and
concurrence as functions of Bloch vectors and mixed-state inputs. We also show the link between the fidelity of
these channels and the double-slit experiment in physics, and demonstrate how triangle qubit channels can be
used in qubit teleportation. Moreover, since the fidelity of parallel qubits is a bivariate surface, we compute its
gradient, Hessian matrix, and Gaussian curvature and derive a quasilinear partial differential equation, a Monge-
Ampere equation, where fidelity is their solution. In advance, we discuss the use of the Positive Partial Transpose
(PPT) criterion and Sylvester’s criterion to derive the entanglement expression for the Bell Diagonal State, and
use a teleportation gate to calculate the fidelity for single, chain, and loop configurations of teleportation gates.
Finally, we describe how to generate a periodic Werner state as a simple entanglement resource by setting a
single parameter for triangle qubit channels.

I. INTRODUCTION

A quantum channel is a complete positive and trace-
preserving (CPTP) linear map between two density matrices.
[3] proved the equivalent of the positivity of the Choi matrix
and the complete positivity of a quantum channel. A qubit
channel is a quantum channel for qubits. The unital qubit
channel is able to represented as a diagonal matrix [9] and
[2].

The fidelity of a quantum channel measures the similarity
between two quantum states [7]. It is defined as the over-
lap between the initial and final states of the quantum system,
where the final state is the state of the quantum system after
it has been transmitted through the channel. The concurrence
is a measure of the entanglement of a quantum state. It is a
measure of the amount of quantum correlation between two
qubits. For qubits, there exist explicit computable fidelity for-
mulas [6]. Fidelity and concurrence are two conjugation ele-
ments to measure qubits [16].

Quantum teleportation is a quantum state transmission via
classical channels and maximally entangled states [1]. Under
a noisy environment, it is hard to generate and transmit max-
imally entangled states for teleportation. Hence, we need to
make non-maximally entangled states with high fidelity [9].
To analyze entanglement of mixed states, we can apply the
Positive Partial Transpose (PPT) criterion [14] [5]. A telepor-
tation circuit shows the procedure of teleportation explicitly in
the textbook [13]. Bell Diagonal States (BDS) and the Werner
States are states for quantum teleportation and communication
[8], [4].

In this article, we construct an unital qubit channel with a
set of cosine correlation functions. For any mixed state input,
we analyze the qubit fidelity and concurrence, which are six-
dimensional functions. To parallel Bloch vectors, the fidelity
is a two-variable surface. Thus, we can calculate its Gradient,
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Hessian, and Gaussian curvature. In addition, the fidelity is
the solution of the quasilinear partial differential equation or
the Monge-Ampere equation [15]. Furthermore, we find that
the fidelity of parallel qubits is related to the superposition and
interference of wave functions.

To apply the triangle qubit channel on teleportation, we use
the unital qubit channel to generate the Bell Diagonal State
(BDS), go through the teleportation gate, and get the output.
We obtain the fidelity formulas for single teleportation, a tele-
portation chain, and a teleportation loop.

Finally, use the triangle qubit channels for teleportation, we
construct a periodic Werner state and show that its fidelity is
close to 1 under the low-frequency cosine function. The fi-
delity surface shows a flat band-like shape on the time axis. In
particular, we observed that the fidelity of the Werner state is
equivalent to that of parallel qubits.

This paper is organized as follows. Sec.I is Introduction.
Sec.II proved a theorem of Triangle Qubit Channel. Sec.III
discussed Fidelity and Concurrence Sec.IV described Quan-
tum Teleportation. Sec.V defined and discussed Periodic
Werner States. Sec.VI is Conclusion.

II. TRIANGLE QUBIT CHANNEL

A. Qubit Channel

Define Md(C) to be the set of d×d matrices over the com-
plex field C, and Dd(C) to be the set of d×d density operator
matrices, which are positive, Hermitian, and trace 1. Channel
φ : Md(C) → Md(C) is a linear map, which is completely
positive while preserving trace. Furthermore, Channel φ is
also a linear map φ : Dd(C) → Dd(C). The unitary channel
φu : Md(C)→Md(C) is the set φu(ρ) =UρU†, where U is a
unitary d ×d matrix, and the operator ρ ∈Dd(C) is the den-
sity operator matrix [2].

Qubit channel φ : M2(C) → M2(C) is a two-dimensional
channel. Any state ρ ∈ M2(C) is represented by the Pauli
matrices as the basis such that ρ = 1

2 ∑
3
i=0 riσi where ri ∈ R



2

and r0 = 1. The vector r⃗ = (rx,ry,rz) with trace(ρ) = 1 is
the Bloch vector. The qubit channel φ acting on the state
ρ ∈ M2(C) is a 4 by 4 real matrix Tφ . The positivity of the
Choi’s matrix of Tφ is equivalent to the complete positivity of
the qubit channel φ [3]. The unital qubit channel is a qubit
channel φ that is the matrix Tφ = diag(1,λ1,λ2,λ3) such that
φ(I/2) = I/2. [10].

B. Triangle Qubit Channel

For any triangle, there exists a unique circumcircle that
passes through each of the three vertices of the triangle. So
we only need to consider a triangle on the unit circle.

Theorem 1. Given a triangle on the unit circle, there exists
an unital qubit channel described by Bloch vector (λ1,λ2,λ3)
= (cos(ω2)cos(ω3), cos(ω3)cos(ω1), cos(ω1)cos(ω2)) where
ω1,ω2,ω3 ∈ R.

Proof. Three distinct vertices on the unit circle of the com-
plex plane compose a unique triangle. Given these three ver-
tices as a vector (e−iθ1 ,e−iθ2 ,e−iθ3) where Θ = (θ1,θ2,θ3),
θ1,θ2,θ3 ∈ R, define a triangle qubit matrix T (Θ;K4)

T (Θ;K4) =
1
2
(
κ0 +κ1eiθ1 +κ2eiθ2 +κ3eiθ3

)
, (1)

where the Klein four-group K4 = (κ0,κ1,κ2,κ3) is an Abelian
group with κ0 as identity, κi

2 = I4 for all i ∈ {0,1,2,3}, and
κ1κ2 = κ3,κ1κ3 = κ2,κ2κ3 = κ1. The K4 representation of
diagonal matrices is as follow:

κ0 =


+1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1

 ,κ1 =


+1 0 0 0
0 −1 0 0
0 0 +1 0
0 0 0 −1

 , (2)

κ2 =


+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1

 ,κ3 =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

 , (3)

where det(κi) = 1, trace(κi) = 0 for i ̸= 0, and κi is diagonal
for all i ∈ {0,1,2,3}.

The modulus squared of triangle qubit matrix is

|T (Θ,K4)|2 =T (Θ,K4)
†T (Θ,K4)

=
1
2
(κ0 +κ1eiθ1 +κ2eiθ2 +κ3eiθ3)

∗1
2
(κ0 +κ1e−iθ1 +κ2e−iθ2 +κ3e−iθ3).

Since a Klein four-group is an Abelian group, the modulus
squared of T (Θ,K4) is equal to

κ0 +
1
4
{

κ1(eiθ1 + e−iθ1)+κ2(eiθ2 + e−iθ2)+κ3(eiθ3 + e−iθ3)

+κ1(ei(θ2−θ3)+ e−i(θ2−θ3))+κ2(ei(θ1−θ3)+ e−i(θ1−θ3))

+κ3(ei(θ1−θ2)+ e−i(θ1−θ2))
}
.

Then, let θ̂ = θ1+θ2+θ3
2 , and apply Eluer and cosine mul-

tiplication formulas, we obtain that the modulus squared of
T (Θ,K4) is equal to

κ0+κ1cos(θ̂ −θ2)cos(θ̂ −θ3)+κ2cos(θ̂ −θ3)cos(θ̂ −θ1)

+κ3cos(θ̂ −θ1)cos(θ̂ −θ2).

Given ω⃗ = (ω1,ω2,ω3) ∈ R3 such that θ1 = ω2 +ω3,θ2 =

ω3 +ω1,θ3 = ω1 +ω2, we obtain θ̂ = ω1 +ω2 +ω3, so ω1 =
θ̂ − θ1,ω2 = θ̂ − θ2, and ω3 = θ̂ − θ3, the modulus squared
of U(Θ,K4) is equal to

κ0 +κ1cos(ω2)cos(ω3)+κ2cos(ω3)cos(ω1)+κ3cos(ω1)cos(ω2)

Let λ⃗ = (λ1,λ2,λ3) ∈ [−1,+1]3 be equal to

(cos(ω2)cos(ω3),cos(ω3)cos(ω1),cos(ω1)cos(ω2)) (4)

and

q0 =
1
4
(1+λ1 +λ2 +λ3),

q1 =
1
4
(1−λ1 +λ2 −λ3),

q2 =
1
4
(1+λ1 −λ2 −λ3),

q3 =
1
4
(1−λ1 −λ2 +λ3),

(5)

since T (Θ;K4)
†T (Θ;K4) ≥ 0, we have diag(q0,q1,q2,q3) ≥

0. Because (q0,q1,q2,q3) are eigenvalues of the Choi matrix
of the density operator ρ = 1

2 (I2+∑
3
i=1 λiσi) with |λi| ≤ 1, by

Lemma 5.11 [9] and Choi’s theorem [3], the diagonal matrix
diag(1,λ1,λ2,λ3) is an unital qubit channel.

Remark 1. By previous definition of (λ1,λ2,λ3), we
have λ1λ2λ3 = (cos(ω1)cos(ω2)cos(ω3))

2, thus cos2(ω1) =
λ2λ3/λ1, cos2(ω2) = λ1λ3/λ2, and cos2(ω3) = λ1λ2/λ3, the
map from λ⃗ to ω⃗ is not bijective. Furthermore, 0 ≤ cos2(x)≤
1 implies λ2λ3 ≤ λ1, λ3λ1 ≤ λ2, and λ1λ2 ≤ λ3.

III. FIDELITY AND CONCURRENCE

A. Definition of Fidelity and Concurrence

Fidelity measures the similarity between two density oper-
ator matrices. Fidelity is defined as [7]

F(SA,SB) =

(
tr
(√√

SASB
√

SA

))2

. (6)

If both SA and SB are qubit states, the explicit formula of
the fidelity for any mixed states is [7] [6]

F(SA,SB) = tr(SASB)+2
√

det(SA)det(SB). (7)

Let τ1,τ2, ... be eigenvalues of the state
√√

SASB
√

SA such
that τ1 ≥ τ2 ≥ ..., the concurrence of SA and SB is defined as
C(SA,SB) = max(0,τ1 −∑k>1 τk) [16].
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To simplify, we express the fidelity and the concurrence
squared as F1(SA,SB) = F(SA,SB),F2(SA,SB) = C(SA,SB)

2.
Since F1(SA,SB)+F2(SA,SB) = 2tr(SASB) [16], we have

F2(SA,SB) = tr(SASB)−2
√

det(SA)det(SB). (8)

Later, concurrence squared is denoted as concurrence2. Con-

sider the matrix FC(SA,SB) =

(
F1(SA,SB) 0

0 F2(SA,SB)

)
, its

characteristic equation is

z2 − tr(FC(SA,SB))z+det(FC(SA,SB)) = 0, (9)

where

tr(FC(SA,SB)) = 2tr(SASB),

det(FC(SA,SB)) = (tr(SASB))
2 −4det(SA)det(SB).

(10)

F1,2(SA,SB) is the maximal/minimal root of the equation re-
spectively.

Remark 2. Since SA and SB are density matrices, their de-
terminants are non-negative real numbers. Thus, the de-
scriminant ∆ = 16det(SA)det(SB)≥ 0 and two roots are non-
negative real numbers. If ∆= 0 then det(SA) = 0 or det(SB) =
0, we obtain F1(SA,SB) = F2(SA,SB) = tr(SASB). The state SA
or SB is in the pure state if det(SA) = 0 or det(SB) = 0.

B. Qubit Fidelity and Concurrence2 Formulas

In this subsection, we are going to discuss the explicit for-
mulas for qubit fidelity and concurrence2 of two-qubit states.

Let I2 be the identity, r⃗ = (rx,ry,rz), s⃗ = (sx,sy,sz) be the
vector in the Bloch sphere, r = ∥r∥,s = ∥s∥ be norms of the
vectors, σ⃗ = (σ1,σ2,σ3) be vector of Pauli matrices, we ex-
press qubits SA and SB as

SA =
1
2
(I2 + r⃗ · σ⃗)

=

(
1+rz

2
rx−iry

2
rx+iry

2
1−rz

2

)
,

SB =
1
2
(I2 + s⃗ · σ⃗)

=

(
1+sz

2
sx−isy

2
sx+isy

2
1−sz

2

)
.

(11)

Since 2(det(SA),det(SB)) = (1− tr(S2
A),1− tr(S2

B)), we have

F1,2(SA,SB) = tr(SASB)±
√

(1− tr(S2
A))(1− tr(S2

B)). (12)

In addition, tr(SASB) = (1+ r⃗ · s⃗)/2, tr(S2
A) = (1+ r⃗ ·⃗r)/2, and

tr(S2
B) = (1+ s⃗ · s⃗)/2, we obtain

F1,2(SA,SB) =
(1+ r⃗ · s⃗)±

√
(1− r2)(1− s2)

2
. (13)

By Lagrange’s identity ∥⃗r× s⃗∥2 = ∥⃗r∥2∥⃗s∥2 − (⃗r · s⃗)2, we
obtain

F1(SA,SB)+F2(SA,SB) = (1+ r⃗ · s⃗) ,

F1(SA,SB)∗F2(SA,SB) =
1
4

(
∥⃗r+ s⃗∥2 −∥⃗r× s⃗∥2

)
.

(14)

F1(SA,SB) and F2(SA,SB) are the maximal and minimal
roots of the equation

z2 − (1+ r⃗ · s⃗)z+
1
4
(∥⃗r+ s⃗∥2 −∥⃗r× s⃗∥2) = 0. (15)

Remark 3. Since fidelity is not a metric, it is not suitable for
some applications. But by fidelity, Bures metric in finite di-
mensition can be defined as Bures angle DA(SA,SB) and Bures
distance DB(SA,SB) as follows,

DA(SA,SB) = arccos
√

F1(SA,SB),

DB(SA,SB)
2 = 2(1−

√
F1(SA,SB)).

(16)

C. Quasilinear Partial Derivative Equations

Generally, let x⃗ = (x1,x2, ...,xn), y⃗ = (y1,y2, ...,yn) be n-
dimentational vectors, where xi,yi ∈ [−1,+1], n is positive
integer, we define the extended fidelity and concurrence2 as

F1,2(⃗x, y⃗) =
1
2
(1+ x⃗ · y⃗±

√
(1− x⃗ · x⃗)(1− y⃗ · y⃗)). (17)

Thus we have

∂F1,2(⃗x, y⃗)
∂xi

=
1
2
(yi ∓Kxi),

∂F1,2(⃗x, y⃗)
∂yi

=
1
2
(yi ∓Kxi)(

−1
K

),

(18)

where K =
√

1−y2

1−x2 , x= ∥x∥, y= ∥y∥, hence, F1,2(⃗x, y⃗) satisfied
the quasilinear first order PDE,

√
1− x2 ∂F1,2(⃗x, y⃗)

∂xi
±
√

1− y2 ∂F1,2(⃗x, y⃗)
∂yi

= 0 (19)

for all i ∈ {1, ...,n}.
The characteristics of the quasilinear Partial Derivative

Equation (PDE) are

dt =
dxi√
1− x2

=
dyi

±
√

1− y2
=

dF1,2

0
(20)

or

dyi

dxi
=±K =±

√
1− y2

1− x2 . (21)

Square and do differential on the first equation of Eq.(20),
we have (

dxi

dt

)2

+
n

∑
i=1

xi
2 = 1,

(
dyi

dt

)2

+
n

∑
i=1

yi
2 = 1 (22)

Since u = dx1/dt = dx2/dt... = dxn/dt, v = dy1/dt =
dy2/dt...= dyn/dt, we obtain

d2u
dt2 +nu = 0,

d2v
dt2 +nv = 0,(u,v ̸= 0) (23)



4

.
They are homogenous Ordinated Derivative Equations

(ODEs) or Simple Harmonic Equations. For parametric vari-
able t, the solutions of ODEs are

dxi

dt
= u(t) = Rucos(ωut −δu) (24)

with initial condition

cu,1 = u(0), cu,2 =
1√
n

du
dt

∣∣∣∣
t=0

(25)

where ωu =
√

n is frequency, Ru =
√

c2
u,1 + c2

u,2 is amplitude,

tan(δu) = cu,2/cu,1 and δu is phase. The same result is true
for v. For fidelity,

Rvcos(
√

nt −δv)

Rucos(
√

nt −δu)
= K. (26)

Finally, we have

xi =
Ru√

n
sin(

√
nt −δu)+ cxi ,

yi =
Rv√

n
sin(

√
nt −δv)+ cyi ,

(27)

where cxi ,cyi are constants.

Remark 4. For vectors of dimension n, their frequencies ωx =
ωy =

√
n are equal. In particular, n=3 is the dimension of the

qubit in the Bloch sphere.

D. Perpendicular Qubit Fidelity

Two vectors r⃗ and s⃗ are perpendicular if and only if r⃗ · s⃗= 0,
then

F1,2(SA,SB) =
1
2

(
1±
√
(1− r2)(1− s2)

)
. (28)

Two vectors r⃗ and s⃗ being perpendicular means that they are
completely non-correlated.

FIG. 1: In the figure, the axis X = r, the axis Y = s, and the axis
Z = F1. Fidelity Surface of Perpendicular Qubit.

E. Parallel Qubit Fidelity

1. Fidelity Surface

Two vectors r⃗, s⃗ ∈ [−1,1]3 are parallel if and only if there ex-
ists a scalar λ ∈ [−1,1] such that s⃗ = λ r⃗, thus

F1,2(SA,SB) =
1+λ r2 ±

√
∆

2
(29)

where ∆ = (1− r2)(1−λ 2r2)) is the discriminant.
|λ | ≤ 1 and r ≤ 1 imply that ∆ ≥ 0 and F1,2 are real numbers.
If ∆ = 0, then r2 = 1 or (λ r)2 = 1, so F1 = F2 = (1+λ r2)/2.
Especially, for λ = {−1,0,+1}

F1,2(SA,SB) =


(1,r2) λ =+1
1
2 (1±

√
1− r2) λ = 0

(1− r2,0) λ =−1

Let u = ∥r∥= cos(γ),v = λ∥r∥= cos(η), since 0 ≤ ∥r∥ ≤ 1,
−1 ≤ λ ≤ 1, in the range of 0 ≤ γ ≤ π/2, 0 ≤ η ≤ π , (u,v) to
(γ,η) is a bijective map. Because

cos(arccos(u)∓arccos(v)) = uv±
√

(1−u2)(1− v2) (30)

thus,

F1,2(γ,η) = cos2(
γ ∓η

2
) (31)

The Bures angle and distance of parallel qubits are

DA(SA,SB) =
γ −η

2
,

D2
B(SA,SB) = 4sin2

(
γ −η

4

)
,

(32)

where −π/2 ≤ (γ −η)/2 ≤ π/4.
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FIG. 2: In the figure, axis X = r,Y = λ ,Z = F1,2. For the par-
allel vectors s⃗ = λ r⃗, the fidelity surface (red) is concave, and the
concurrence2 surface (blue) is convex. Both surfaces are smoothly
connected.

2. Periodic Parallel Qubit Fidelity

Given s⃗ = λ r⃗ such that λ = cos2(kx + ωt) where k is the
wavenumber, x is the position, ω is the frequency, and t is the
time, the fidelity and concurrence2 of periodic paralle qubit
are represented as

F1,2(SA,SB) =
1
2
(1+ cos2(kx+ωt)r2

±
√
(1− r2)(1− cos4(kx+ωt)r2))

(33)

FIG. 3: In the figure, the X axis denotes r, the Y axis denotes t, and
the Z axis denotes F1. Set the frequency ω = 2π f , f = 1/7, position
x = 0, the fidelity surface of the periodic parallel qubit looks like a
strip of fried bacon floating below the fidelity plane Z=1 a little bit.

3. Hessian Matrix and Monge-Ampere Equation

F1,2(r,λ ) are graphs of differentiable functions with two vari-
ables r ∈ [0,1] and λ ∈ [−1,+1]. The gradients of F1,2(r,λ )
are vectors of first-order partial derivatives,

∇F1(r,λ ) =

(
∂F1(r,λ )

∂ r
∂F1(r,λ )

∂λ

)
=

(−r
k (1− kλ )2

r2

2 (1− kλ )

)
, (34)

where k =
√

1−r2

1−(λ r)2 . Notice that k is not a polyminoal.

F1(r,λ ) is the solution of quasi-linear partial differential
equation,

(kr)
∂F1(r,λ )

∂ r
+(1− kλ )

∂F1(r,λ )
∂λ

= 0 (35)

Hence, we have the Monge-Ampere equation [15],

det(D2(F(r,λ )) = x1x2 − (x1 + x2)
∂ 2F1(r,λ )

∂ r∂λ
, (36)

where (x1,x2) = ( c1
1−b ,

c2
a ) such that (a,b) = (rk,λk),(

c1
c2

)
=

(
− ∂a

∂ r
∂b
∂ r

− ∂a
∂λ

∂b
∂λ

)(
∂F1(r,λ )

∂ r
∂F1(r,λ )

∂λ

)
(37)

and

∂ 2F1(r,λ )
∂ r∂λ

= r
(

1−λk
(

1+
1
2

(
1

1−λ 2r2 − 1
1− r2

)))
.

(38)
F1(r,λ ) is the solution of the Monge-Ampere Equation
Eq.(36).

4. Special Points

Points of a surface with zero gradient are called critical
points. Eigenvalues and eigenvectors of the Hessian matrix
of a surface are their principal curvatures and principal di-
rections of the curvatures, respectively. Gaussian curvature
is the product of two principal curvatures. Mean curvature is
the average of two principal curvatures.
Let gradident ∇F1(r,λ ) = (0,0), we obtain two critical sets
r = 0 and λ = 1. Two Hessian matrices on the critical sets
are

D2(F1(0,λ )) =
(−(1−λ )2

2 0
0 0

)
D2(F1(r,1)) =

(
0 0
0 − r2

2

) (39)

Since one eigenvalue of D2(F(r,λ )) on the critical sets is zero,
others are negative, their det(D2(F(r,λ ))) = 0. They are de-
generate critical points of F1(r,λ ). Thus, at the critical point,
since |∇F1(r,λ )| = 0, the Gaussian curvature is equal to the
determinant of Hessian matrix and is zero. The mean curva-
tures is non-positive −( 1−λ

2 )2 and −( r
2 )

2. All critical points
of fidelity surface are degenerate meaning that the fidelity sur-
face does not belong to the classification of Morse function.
[12] [11]

F. Fidelity and Superposition

Consider two wave functions |ψ1⟩, |ψ2⟩, they have the
same amplitude and global phase difference in Hopf coordi-
nates: |ψ1⟩ = cos(γ) |0⟩+ eiφ sin(γ) |1⟩, |ψ2⟩ = cos(η) |0⟩+
eiφ sin(η) |1⟩, the averages of superposition sum and differ-
ence are

(|ψ1⟩± |ψ2⟩)
2

=
1
2
((cos(γ)± cos(η)) |0⟩

+ eiφ (sin(γ)± sin(η)) |1⟩).
(40)
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The squared amplitudes of the averages of superposition sum
and difference are

∣∣∣∣ |ψ1⟩± |ψ2⟩
2

∣∣∣∣2 = cos2(
γ ∓η

2
). (41)

Hence, two-qubit fidelity and concurrence2 F1,2(γ,η) =∣∣∣ |ψ1⟩∓|ψ2⟩
2

∣∣∣2, which show the effects of quantum superposition
and interference.
Given γ = cos−1(r) and η = cos−1(λ r), a new expression of
the fidelity and concurrence squared is

F1,2(r,λ ) = cos2
(

cos−1(r)∓ cos−1(λ r)
2

)
(42)

In the case of Periodic Werner State with λ = cos2(2π f t),

F1,2(r, t) = cos2
(

cos−1(r)∓ cos−1(cos2(2π f t)r)
2

)
(43)

where f is the frequency and t is the time.

G. Fidelity and Double-slit Experiment

In the double-slit experiment, the intensity of the wave inter-
ference through double slits is I = I0cos2

(
φ

2

)
, where φ is the

phase shift. It is similar to the fidelity formula Eq.(41) where
the meaning of the phase difference is the same. Setting r be
constant and λ = rcos2(ω), we can generate the interference
fringes like that in the double-slit experiment.

FIG. 4: Fidelity of Periodic Werner State Surface Topview f=5/2.
For the fidelity of the Periodic Werner States, the γ −η is the
phase difference, the fidelity is same as the intensity when we
assign initial intensity I0 to be zero. When we set the γ to be
a constant, we generate the interference fringes in computer
rendering from top-z viewing.

FIG. 5: Fidelity of Periodic Werner State Interference.

IV. QUANTUM TELEPORTATION

By using the shared entangled state ST Q along with the lo-
cal operations and classical communication (LOCC), quan-
tum teleportation transfers the input state SA from the sender
Alice to the receiver Bob, and obtains the output state SB. For
quantum teleportation applications, we use a triangle qubit
channel to generate Bell Diagonal State (BDS) as the entan-
gled state ST Q shared by Alice and Bob. The diagram be-
low shows the quantum circuit of quantum teleportation [13].
Note that the measurement has moved to the final stage.

SA 1

2

3
ST Q

H

X Z

SAB

SB

A. Teleportation States

In the diagram, the density matrix SA is Alice’s input qubit

SA =
1
2

(
1+ rz rx − iry

rx + iry 1− rz

)
, (44)

where (rx,ry,rz) is a point in Bloch sphere. SB is Bob’s output
state; ST Q is the entangled state pair shared by Alice and Bob;
and SAB is the output state of the entire teleportation. The
other gates and measurements are processing units.
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B. Generate Bell Diagonal States

We observe that the eigenvalues of an unital qubit channel
are non-negative, and their sum is 1, so they can be used as
the probability distribution of the Bell basis, forming a Bell
Diagonal State (BDS). The permutation of the probability dis-
tribution is the S4 symmetric group with 4!=24 elements.
Bell basis is a collection of Bell states. According to the no-
tation in the textbook [13], we can express the Bell basis as a
matrix of

∣∣β jk
〉
,(

|β00⟩ |β01⟩
|β10⟩ |β11⟩

)
=

( |00⟩+|11⟩√
2

|01⟩+|10⟩√
2

|00⟩−|11⟩√
2

|01⟩−|10⟩√
2

)
, (45)

where
∣∣β jk

〉
= 1√

2
(|0, j > +(−1) j|1,k ⊕ 1 >), j,k ∈ {0,1},

and ⊕ is the xor. A Bell Diagonal State (BDS) is a two-qubit
state that is diagonal in the Bell basis. It is represented as

SBD =
1

∑
j,k=0

p jk
∣∣β jk

〉〈
β jk
∣∣ (46)

where {p jk} is a probablity distribution with 0 ≤ p jk ≤
1 and ∑

1
j,k=0 p jk = 1. Given an unital qubit channel

diag(1,λ1,λ2,λ3) Eq.(5), we haveq00
q01
q10
q11

=
1
4

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1


 1

λ1
λ2
λ3

 ,

where ∑
1
j,k=0 q jk = 1 and 0 ≤ q jk ≤ 1 for all j,k ∈ {0,1}.

Since

|β00⟩⟨β00|=
1
2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 , |β01⟩⟨β01|=
1
2

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 ,

|β10⟩⟨β10|=
1
2

1 0 0 1̄
0 0 0 0
0 0 0 0
1̄ 0 0 1

 , |β11⟩⟨β11|=
1
2

0 0 0 0
0 1 1̄ 0
0 1̄ 1 0
0 0 0 0

 ,

(47)

where 1̄ = −1, we obtain the Bell diagnoal state constructed
by the triangle qubit channel ST Q = ∑0≤ j,k≤1 q jk

∣∣β jk
〉〈

β jk
∣∣,

ST Q =
1
4

 1+λ1 0 0 λ2 +λ3
0 1−λ1 λ2 −λ3 0
0 λ2 −λ3 1−λ1 0

λ2 +λ3 0 0 1+λ1.

 (48)

ST Q can also be expressed as 1
4 (I2 ⊗ I2 + λ2(σ1 ⊗ σ1) −

λ3(σ2 ⊗σ2)+λ1(σ3 ⊗σ3)).

C. Entanglement of Bell Diagnoal States

According to the Positive Partial Transpose (PPT) criterion
[14] [5], for the positive density matrix ST Q in Eq.(48), if and

only if exists a negative eigenvalue of the partial transpose
matrix STB

T Q, then the two qubits in the state ST Q is entangled.

STB
T Q =

1
4

 1+λ1 0 0 λ2 −λ3
0 1−λ1 λ2 +λ3 0
0 λ2 +λ3 1−λ1 0

λ2 −λ3 0 0 1+λ1

 (49)

The eigenvalues of STB
T Q are 1

4 (1− λ1 − λ2 − λ3),
1
4 (1+ λ1 −

λ2 + λ3),
1
4 (1− λ1 + λ2 + λ3),

1
4 (1+ λ1 + λ2 − λ3). In con-

trast, the eigenvalues of ST Q are 1
4 (1+ λ1 + λ2 + λ3),

1
4 (1−

λ1 + λ2 − λ3),
1
4 (1+ λ1 − λ2 − λ3),

1
4 (1− λ1 − λ2 + λ3). To

the state of unital qubit channel ST Q , all the eigenvalues are
non-negative, thus, if one of an eigenvalue of STB

T Q is negative,
the state ST Q is entangled.
By Sylvester’s criterion, a Hermitian maxtrix such as STB

T Q is
positive-definite if and only if the determinants of the matrices
(the upper left i-by-i corner of 4STB

T Q, i=1,2,3,4) are positive,

det(1+λ1) = 1+λ1 ≥ 0, (50)

det
(

1+λ1 0
0 1−λ1

)
= 1−λ

2
1 ≥ 0 (51)

det

1+λ1 0 0
0 1−λ1 λ2 +λ3
0 λ2 +λ3 1−λ1


= (1+λ1)((1−λ1)

2 − (λ2 +λ3)
2)

(52)

det

 1+λ1 0 0 λ2 −λ3
0 1−λ1 λ2 +λ3 0
0 λ2 +λ3 1−λ1 0

λ2 −λ3 0 0 1+λ1


= ((1−λ1)

2 − (λ2 +λ3)
2)((1+λ1)

2 − (λ2 −λ3)
2)

(53)

By Eq.(50) and Eq.(51), the determinants are always non-
negative. In Eq.(52), if |1 − λ1| < |λ2 + λ3| then STB

T Q is
negative thus ST Q is entangled. Otherwise, in Eq.(52), if
|1+λ1|< |λ2 −λ3| then STB

T Q is negative ST Q is entangled.

Remark 5. Formula |1∓ λ1| < |λ2 ± λ3| violates Bell’s in-
equality for λ1,λ2,λ3. For ST Q, applying the Positive Partial
Transpose (PPT) and Sylvester’s criteria, we can derive the
Bell’s inequality from Bell diagonal states generated by the
unital qubit channel. To spacial λi relation,

Remark 6. Let λ1 = λ2 = λ3 = λ > 0 or −λ1 =−λ2 = λ3 =
λ > 0, there is one eigenvalue (1−3λ )/4 and three eigenval-
ues (1+ λ )/4. Negative eigenvalue means (1− 3λ )/4 < 0.
Hence, if λ > 1/3 then the state ST Q is entangled.

Remark 7. By the identity we found below

((1+λ1 +λ2 +λ3)∗ (1−λ1 +λ2 −λ3)∗
(1+λ1 −λ2 −λ3)∗ (1−λ1 −λ2 +λ3))

−((1−λ1 −λ2 −λ3)∗ (1+λ1 −λ2 +λ3)∗
(1−λ1 +λ2 +λ3)∗ (1+λ1 +λ2 −λ3))

=16λ1λ2λ3,

(54)
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we obtain

det(ST Q)−det(STB
T Q) =

λ1λ2λ3

16
. (55)

Hence, if det(STB
T Q)< 0 then λ1λ2λ3 > 0.

D. Quantum Teleportation Gate

The teleportation circuit is represented as a unitary gate
UT EL = U1,3

Z U2,3
X U1

HU1,2
CNOT in the diagram, where U1,3

Z is the
controlled-Z gate wired qubits 1 and 3, U2,3

X is the controlled-
X gate wired qubits 2 and 3, U1

H is the Hadamard gate in qubit
1, and U1,2

CNOT is the CNOT gate wired qubit 1 and 2. The final
teleportation matrix is

UT EL =
1√
2



+1 0 0 0 0 0 +1 0
0 +1 0 0 0 0 0 +1
0 0 0 +1 0 +1 0 0
0 0 +1 0 +1 0 0 0
+1 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 +1
0 0 0 +1 0 −1 0 0
0 0 −1 0 1 0 0 0


(56)

Since UT ELU†
T EL = U†

T ELUT EL = I and det(UT EL) = 1,
UT EL is a quantum unitary gate. Its eigenvalues are
(−1,−1,+1,+1,−i,+i, 1+i√

2
, 1−i√

2
) on the unit circle.

E. Output States

The entire output state is SAB =UT EL(SA⊗ST Q)UT EL
†. Bob’s

output state is SB = TrA(SAB)/Tr(SAB). After measuring on
Alice side, where TrA(SAB) is the partial trace, so

SB =
1
2

(
1+λ1rz λ2rx − iλ3ry

λ2rx + iλ3ry 1−λ1rz

)
(57)

The map between SA and SB on Bloch spheres is (rx,ry,rz)→
(λ2rx,λ3ry,λ1rz).

F. Teleportation Fidelity of Bell Diagonal States

The teleportation fidelity and concurrence2 of Bell Diagonal
States is

FT Q
1,2 (SA,SB) =

1
2
(1+λ2r2

x +λ3r2
y +λ1r2

z

±
√

(1− (r2
x + r2

y + r2
z ))(1− (λ2

2r2
x +λ3

2r2
y +λ1

2r2
z ))).

(58)

If SA is in a pure state we have r2
x + r2

y + r2
z = 1, otherwise

SA is in a mixed state such that r2
x + r2

y + r2
z < 1. Using the

entangled Bell Diagonal State (BDS) generated by the unital

qubit channel, and taking any mixed qubit state as input, we
get the teleportation fidelity,

FT Q
1,2 (⃗r, s⃗) =

1
2

(
(1+ r⃗ · s⃗)±

√
(1− r2)(1− s2)

)
, (59)

where λ⃗ = (λ1,λ2,λ3), r⃗ = (rx,ry,rz), P(123)(⃗λ ) = (λ2,λ3,λ1)

and s⃗ = P(123)(⃗λ )⊙ r⃗. The symbol ⊙ represents the Hardmart

product of two vectors. The vector P(123)(⃗λ ) is the cyclic per-

mutation (123) of the vector λ⃗ .

G. Teleportation Chain

We can connect teleporation units as a chain [8]. The n-th
state is

SBn =
1
2

(
1+λ n

1 rz λ n
2 rx − iλ n

3 ry
λ n

2 rx + iλ n
3 ry 1−λ n

1 rz

)
(60)

and the n-th teleportation fidelity is

FT Qn
1,2 =

1
2
(1+ r⃗ · s⃗n ±

√
(1− r2)(1−∥s⃗n∥2) (61)

where s⃗n = P(⃗λ )⊙n⊙ r⃗, ⊙ is the Hardmard product of vectors,
P = (123) is the permutation of vector λ⃗ , and the n times
product P(⃗λ )⊙n = P(⃗λ )⊙P(⃗λ )⊙ ...

H. Teleportation Loop

For the teleportation chain, if n→∞, it is a teleportation loop.
By squeeze theorem, because −|λi|n ≤ λ n ≤ |λi|n , 0 ≤ |λi|<
1 for all n, and limn→∞(−|λi|n) = limn→∞(|λi|n) = 0, thus
limn→∞ λi

n = 0 where i ∈ {1,2,3}.

1. If 0 ≤ |λi|< 1 where i ∈ {1,2,3}, we get

FT Q∞

1,2 = lim
n→∞

FT Qn
1,2 =

1
2

(
1±
√

1− r2
)

(62)

2. If one of λi = +1, i ∈ {1,2,3}, because ∑
3
i=1 λi

2 ≤ 1,
other λ j = 0 for i ̸= j. Assuming i = 1, we have

FT Q∞

1,2 =
1
2

(
1+ r2

z ±
√

(1− r2)(1− r2
z )

)
. (63)

The output SB∞
is

SB∞
=



1
2

(
1+ rz 0

0 1− rz

)
λ⃗ = (1,0,0)

1
2

(
1 rx
rx 1

)
λ⃗ = (0,1,0)

1
2

(
1 −iry

iry 1

)
λ⃗ = (0,0,1)
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3. If one of λi =−1, i ∈ {1,2,3}, since ∑
3
i=1 λi

2 ≤ 1, other
λ j = 0 for i ̸= j. The limit FT Q∞

does not exist. The
teleportation loop is in the oscillate state and may act
as an oscillator.

Assuming i = 1, we obtain two sub-sequences that have
limits,

FT Qn
1,2 =


1
2

(
1+ r2

z ±
√

(1− r2)(1− r2
z )
)

n is even
1
2

(
1− r2

z ±
√

(1− r2)(1− r2
z )
)

n is odd

The output SB∞
is

SB∞
=



1
2

(
1− rz 0

0 1+ rz

)
λ⃗ = (−1,0,0)

1
2

(
1 −rx

−rx 1

)
λ⃗ = (0,−1,0)

1
2

(
1 +iry

−iry 1

)
λ⃗ = (0,0,−1)

V. PERIODIC WERNER STATES

A. Werner States

The two-qubit Werner state is defined as a linear combination
of a singlet Bell state such as |ψ⟩⟨ψ| and the maximally mixed
state I4,

W (λ ) = λ |ψ⟩⟨ψ|+ 1−λ

4
I4 (64)

where λ is a real parameter such that 0 ≤ λ ≤ 1. Given λ1 =
λ2 = λ3 = λ , we have q00 =

1+3λ

4 , q01 = q10 = q11 =
1
4 (1−λ ),

and

WT Q(λ ) =
1

∑
j,k=0

q jk
∣∣β jk

〉〈
β jk
∣∣= λ |β00⟩⟨β00|+

1−λ

4
I4

=
1
4

1+λ 0 0 2λ

0 1−λ 0 0
0 0 1−λ 0

2λ 0 0 1+λ .


(65)

.
Applying the Werner state WT Q to the teleportation, we obtain
the output state,

SB =
1
2

(
1+λ rz λ (rx − iry)

λ (rx + iry) 1−λ1rz

)
(66)

.
The teleportatin fidelity of Werner states is equal to the fidelity
of two parallel qubits in Eq.(29). It is

FWT Q(r,λ ) =
1
2

(
1+λ r2 +

√
∆

)
. (67)

where the discriminant is ∆ = (1− r2)(1−λ 2r2).

B. Periodic Werner States

The Werner state of triangle qubit channel is a special param-
eterization such that λ = λ1 = λ2 = λ3 = cos2(ω), thus

WT Q(ω) = cos2(ω) |β00⟩⟨β00|+
(

sin(ω)

2

)2

I4. (68)

Its teleportation fidelity is

FWT Q(r,ω) =
1
2

(
1+ cos2(ω)r2 +

√
(1− r2)(1− cos4(ω)r2)

)
(69)

where r ∈ [0,+1],ω ∈ (−∞,+∞). For the variable ω , it is a
periodic function with period π .

FIG. 6: Blue represents the fidelity of the regular Werner state;
red represents the fidelity of the periodic Werner state. The fi-
delity of Werner states lies in (x,y,z) = (r,ω,F(r,ω)) ∈ [0,+1]×
(−∞,+∞)× [0,+1]. Given ω = 2π f , figure (a) is f=1/2, (b) is f=1/8,
and (c) f=1/16. The lower frequency f shows a flatter fidelity close to
the plane (z=1).

Remark 8. WT Q(ω) is entangled if cos2(ω) > 1/3 [5]. It is
equivalent to |cos(ω)|> 1/

√
3. Assuming cos(ω0) = 1/

√
3 =

1/tan(π

3 ) or ω0 ≈ 54.7356103◦, we can divide ω ∈ [0,2π)
into four intervals: [0,ω0), [ω0,π − ω0), [π − ω0,π + ω0),
[π +ω0,2π), where the WT Q(ω) is in the periodic states of
entanglement, separation, entanglement, and separation.
Let ω = 2π f ∗ t, where f is the frequency, t is
the time, then WT Q(ω) is in the states of peri-
odic entanglement and separation with the time t.
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FIG. 7: Blue and red represent the fidelity and concurrence2 of the
periodic Werner states, respectively. The domain lies in (X ,Y,Z) =
(r,ω,F(r,ω)) ∈ [−1,+1]× (0,1)× [0,1]. Given ω = 2π f , the fre-
quency f=1/2.

FIG. 8: Blue and red represent the fidelity and concurrence2 of the
periodic Werner states, respectively. The domain lies in (X ,Y,Z) =
(r,ω,F(r,ω)) ∈ [−1,+1]× (0,1)× [0,1]. Given ω = 2π f , the fre-
quency f=1/8.

FIG. 9: Blue and red represent the fidelity and concurrence2 of the
periodic Werner states, respectively. The domain lies in (X ,Y,Z) =
(r,ω,F(r,ω)) ∈ [−1,+1]× (0,1)× [0,1]. Given ω = 2π f , the fre-
quency f=1/16. The lower frequency f shows a flatter fidelity close
to the plane (z=1).

Remark 9. The figure below is a top-view of the surface of the
periodic Werner state viewed from the positive z-axis. Yellow,
blue, green, and red contours use frequency f=1/2, 1/4, 1/8,
and 1/16 to enclose the fidelity area. The lower frequency f
covers a larger area. This means lower frequencies get higher
fidelity.
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FIG. 10: The figure is the top-view of the surface of periodic Werner
states from the positive z-axis where X = r and Y = λ . The contour
yellow, blue, green, and red enclose the fidelity areas with frequen-
cies f=1/2, 1/4, 1/8, and 1/16.

VI. CONCLUSION

In this paper, we developed and studied triangle qubit chan-
nels. Besides, we studied qubit fidelity and concurrence
squared, and explored their explicit formulas in Bloch space.
In addition, we analyzed the geometry of fidelity and concur-
rence, which are expressed as the roots of a quadratic equa-
tion. By creating the Bell diagonal state, we can apply the
unital qubit channel to the qubit teleportation. In particular,
we developed periodic Werner states constructed from trian-
gle qubit channels.
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M., “A universal set of qubit quantum channels,” Journal of
Physics A: Mathematical and Theoretical 47, 135302 (2014).

[3] Choi, M.-D., “Completely positive linear maps on complex
matrices,” Linear algebra and its applications 10, 285–290
(1975).

[4] Gårding, E. R., Schwaller, N., Chan, C. L., Chang, S. Y., Bosch,
S., Gessler, F., Laborde, W. R., Hernandez, J. N., Si, X., Duper-
tuis, M.-A., et al., “Bell diagonal and werner state generation:
entanglement, non-locality, steering and discord on the ibm
quantum computer,” Entropy 23 (2021).

[5] Horodecki, M., Horodecki, P., and Horodecki, R., “Separability
of n-particle mixed states: necessary and sufficient conditions
in terms of linear maps,” Physics Letters A 283, 1–7 (2001).

[6] Hübner, M., “Explicit computation of the bures distance for
density matrices,” Physics Letters A 163, 239–242 (1992).

[7] Jozsa, R., “Fidelity for mixed quantum states,” Journal of mod-
ern optics 41, 2315–2323 (1994).

[8] Li-Hui, S., Xu-Tao, Y., Xiao-Fei, C., Yan-Xiao, G., and Zai-
Chen, Z., “Quantum information transmission in the quantum
wireless multihop network based on werner state,” Chinese
Physics B 24, 050308 (2015).

[9] Martin, K., “The scope of a quantum channel,” in Proceedings
of Symposia in Applied Mathematics, Vol. 71 (2012) pp. 183–
213.

[10] Martin, K., Feng, J., and Krishnan, S., “A free object in quan-
tum information theory,” Electronic Notes in Theoretical Com-
puter Science 265, 35–47 (2010).

[11] Matsumoto, Y., An introduction to Morse theory, Vol. 208
(American Mathematical Soc., 2002).

[12] Milnor, J., Morse Theory.(AM-51), Volume 51 (Princeton uni-
versity press, 2016).

[13] Nielsen, M. A.and Chuang, I., “Quantum computation and
quantum information,” (2002).

[14] Peres, A., “Separability criterion for density matrices,” Physi-
cal Review Letters 77, 1413 (1996).

[15] Trudinger, N. S.and Wang, X.-J., “The monge-ampere equation
and its geometric applications,” Handbook of geometric anal-
ysis 1, 467–524 (2008).

[16] Uhlmann, A., “Fidelity and concurrence of conjugated states,”
Physical Review A 62, 032307 (2000).


